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Abstract
An explicit construction for Q-operators of the finite XXZ spin chain with
twisted boundary conditions is presented. The massless and the massive
regimes are considered as well as the root of unity case. It is explained how
these results yield an alternative expression for the trace function employed in
the description of the correlation functions of the inhomogeneous XXZ model
on the infinite lattice by Boos, Jimbo, Miwa, Smirnov and Takeyama.

PACS numbers: 05.50.+q, 02.20.Uw, 02.30.Ik

1. Introduction

The computation of correlation functions is one of the major challenges in integrable systems.
Multidimensional integral formulae have been derived for the infinite [1–3] as well as the
finite XXZ spin chain at zero [4, 5] and at finite temperature [6]. More recently it has been
observed that some of these multidimensional integrals can be reduced to one-dimensional ones
allowing for their explicit computation [7–9]. In a series of papers [10–12] this reducibility
was connected to a duality between the solutions of the quantum Knizhnik–Zamolodchikov
(qKZ) equations of level 0 and level −4 which the correlation functions of the model ought to
obey [13].

In this paper we will refer to the subsequent work by Boos, Jimbo, Miwa, Smirnov and
Takeyama on the correlation functions of the infinite XXZ spin chain [14],

HXXZ = 1

2

∞∑
j=−∞

{
σx

j σ x
j+1 + σ

y

j σ
y

j+1 +
q + q−1

2
σ z

j σ z
j+1

}
, q = eiπν. (1)

There it is explained that the correlation functions are particular solutions of a reduced set of
qKZ equations which can be formulated in terms of a special trace of a certain monodromy
matrix. The latter formally resembles in its algebraic structure the monodromy matrix of the
inhomogeneous six-vertex model on a finite lattice whose number of columns is determined
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by the number of operators in the correlation function. It is the special trace of this finite
monodromy matrix which we will identify as an analytic continuation of the six-vertex fusion
hierarchy in terms of Q-operators. Before giving the technical details of the computation we
state this result more explicitly. To this end we first briefly summarize the main outcome of
the work [14].

1.1. Correlation functions and a generalized trace

Consider the correlation functions of the elementary matrices
(
Eεj ,ε̄j

)
j

acting on the j th site
in the XXZ spin chain and interpret

hp(λ1, . . . , λp)ε1,...,εp,ε̄p,...,ε̄1 = 〈vac| (E−ε1,ε̄1

)
1 · · · (E−εp,ε̄p

)
p

|vac〉
p∏

j=1

(−ε̄j ) (2)

with εj , ε̄j = ±1 as the vector components of a function hp = hp(λ1, . . . , λp) whose values
lie in the tensor space V ⊗2p, V = Cv+ ⊕ Cv−. Here |vac〉 denotes the groundstate of the six-
vertex model on an infinite lattice with inhomogeneity parameters {λj }. In the homogeneous
limit λj → 0 this becomes the groundstate of the Hamiltonian (1)1. The vector valued
functions hp are solutions of a set of reduced qKZ equations and according to [14] can be
expressed as

hp(λ1, . . . , λp) = e�̂p(λ1,...,λp)

2p

p∏
�=1

s�,�̄, s = v+ ⊗ v− − v− ⊗ v+, �̄ = 2p + 1 − � (3)

where �̂ =∑i<j �̂(i,j) is a sum of operators of the form

�̂(i,j)(λ1, . . . , λp) = ω̃(λij )W̃
(i,j)(qλ1 , . . . , qλp ) + ω(λij )W

(i,j)(qλ1 , . . . , qλp ) (4)

with λij = λi − λj and ω, ω̃ being certain scalar functions. The operators W̃ ,W depending
rationally on {qλi } are defined through the aforementioned special trace of a monodromy
matrix. For instance, setting (i, j) = (1, 2) and λ0 = (λ1 + λ2)/2 one considers the map
V ⊗2(p−2) → V ⊗2p

pXp−2(λ1, . . . , λp) = Trλ12L2̄(λ02 − 1) · · · Lp̄(λ0p̄ − 1)Lp(λ0p) · · · L2(λ02)

[λ12]q
∏p

j=3[λ1j ]q[λ2j ]q
s1,2̄s1̄,2 (5)

which decomposes as

pXp−2(λ1, . . . , λp) = −λ12 ·p G̃p−2(q
λ1 , . . . , qλp ) +pGp−2(q

λ1 , . . . , qλp ). (6)

The two terms appearing in the above sum determine the two operators on the right-hand
side in (4). For further details and the precise relation between G, G̃ and W, W̃ we refer the
reader to [14]. For our purposes it will be sufficient to focus only on the following object in
End V ⊗2p−2:

t := Trλ12L2̄(λ − λ2 − 1) · · · Lp̄(λ − λp̄ − 1)Lp(λ − λp) · · · L2(λ − λ2). (7)

The operator Lj ∈ Uq(sl2) ⊗ End Vj is a quantum group intertwiner and

Trλ ≡ Trλ,ζ=qλ (8)

denotes a linear function

Trλ,ζ : Uq(sl2) ⊗ C[ζ, ζ−1] → λC[ζ, ζ−1] ⊗ C[ζ, ζ−1] (9)

1 We follow here the conventions in [14] and consider in the massive regime, where the groundstate is twofold
degenerate, only matrix elements between the same vectors. Note further that unlike in the case of the XXX chain it
is not known at the moment how to take the homogeneous directly in the ansatz of [14].
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which for λ = n + 1 yields the conventional trace over the quantum group representation π(n)

of spin n/2,

Trλ=n+1(x) = Tr
π(n)

x, ∀x ∈ Uq(sl2). (10)

For our definition of π(n) see (20) in the text below. In particular, one has for the special
elements x = 1, qh and the Casimir operator

C = qh−1 + q1−h

(q − q−1)2
+ ef (11)

the following identities:

Trλ,ζ 1 = λ, Trλ,ζ q
mh = ζm − ζ−m

qm − q−m
, Trλ,ζC = ζ + ζ−1

(q − q−1)2
. (12)

We will now explain the main point of this paper, namely, that there is an alternative expression
for (7) which does not use the introduction of the abstract trace function (9) but relies on the
two linearly independent solutions to Baxter’s TQ equation for the inhomogeneous six-vertex
model with twisted boundary conditions.

1.2. Baxter’s TQ equation and the six-vertex fusion hierarchy

Consider the inhomogeneous six-vertex model on a finite lattice with length M = 2p − 2 ∈
2N, compare with (7). This model can be solved by finding solutions to Baxter’s TQ equation
[15–18],

t (λ)Q(λ) = Q(λ + 1)

M∏
m=1

[λ − λm]q + Q(λ − 1)

M∏
m=1

[λ − λm + 1]q . (13)

Here t denotes the six-vertex transfer matrix and Q is an auxiliary matrix. In terms of
eigenvalues (13) is a difference equation of second order and hence will in general allow for
two linearly independent solutions, say Q± [19–21]. However, they do not always possess the
same analyticity properties. For instance, for generic q and when M is even, as it is the case
here, there is only one solution which can be expressed as a product of the form

Q+(λ) =
n+∏

m=1

[
λ − ξ+

m

]
q

=
n+∏

m=1

sin πν
[
λ − ξ+

m

]
sin πν

, ξ+
m ≡ Bethe roots, (14)

the other, Q−, contains terms linear in λ [21]. The situation is different for M odd where both
solutions take the form of a product of sine functions. See also the discussion in [22] and
[23–25] for the case when q is a root of unity and the second solution Q− factorizes into Q+

and a ‘complete string’ polynomial due to a loop algebra symmetry of the model [26]. Here
we will remove the associated degeneracies in the spectrum.

In this paper we give an explicit construction of the Q-operators behind the two solutions
Q± for even M and relate via a limiting procedure the linear terms in the second solution
to the decomposition in (6). For the construction of Q-operators one in general assumes
analyticity with respect to the variable z = q2λ by requiring that the Q-operators commute for
arbitrary values of the spectral parameter, [Q(z1),Q(z2)] = 0 [18]. This usually prevents the
appearance of linear terms in λ.

The key to obtain these terms is the introduction of quasi-periodic boundary conditions
on the finite lattice taking the limit to periodic boundary conditions at the very end of the
construction. The twisted boundary conditions depend on a generic twist parameter α where
the value α = 0 corresponds to ordinary periodic boundary conditions. For α 
= 0 two
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linearly independent solutions to (13) without linear terms can be constructed and one finds
a simplified expression for the six-vertex fusion hierarchy: denote by t (n)

α the transfer matrix
with spin n/2 in the auxiliary space; then one has

t (n−1)
α (λ) = q−nαQ+

α

(
λ + n

2

)
Q−

α

(
λ − n

2

)− qnαQ+
α

(
λ − n

2

)
Q−

α

(
λ + n

2

)
q−Sz−α − qα+Sz . (15)

Here Sz denotes the total spin operator acting on the chain. By analytic continuation of this
formula with respect to the spin variable n/2 of the transfer matrix one obtains in the limit
α → 0 an alternative expression for (7),

t(λ, ζ ) = lim
α→0

ζ−αQ+
α

(
qλζ

1
2
)
Q−

α

(
qλζ− 1

2
)− ζ αQ+

α

(
qλζ− 1

2
)
Q−

α

(
qλζ

1
2
)

q−Sz−α − qα+Sz , (16)

which reproduces all the desired properties (12) of the trace function, in particular the
appearance of linear terms in λ,

qMλt(λ, ζ = qλ) = λ · g̃(q2λ) + g(q2λ). (17)

In (16) we have identified on the right-hand side of the equation Q±
α (λ) ≡ Q±

α (qλ) and
g̃(x), g(x) in (17) are operator valued polynomials whose degrees in each fixed spin sector Sz

are given by

deg g̃|Sz = M − |Sz| and deg g|Sz � M, (18)

where the upper bound for deg g|Sz is assumed when Sz 
= 0 but it is strictly smaller than
M when Sz = 0. This will be derived in section 4. Before that we present in section 3 our
concrete construction of the Q-operators, which will relate the appearance of the extra variable
ζ to a special restriction of a Verma module of the upper Borel subalgebra Uq(b+) ⊂ Uq(ŝl2).

It should be emphasized that our construction of Q-operators for the quasi-periodic chain
has applications beyond the focus of this paper and it would be interesting to see whether
similar formulae also occur in the treatment of the correlation functions for the finite XXZ
chain [4, 5, 6]. These approaches rely on the Bethe ansatz and we stress that the Bethe ansatz
equations are also contained in (15) when setting n = 1 and shifting λ → λ + 1/2,

M∏
m=1

[λ − λm + 1]q = q−αQ+
α(λ + 1)Q−

α (λ) − qαQ+
α(λ)Q−

α (λ + 1)

q−Sz−α − qα+Sz . (19)

In the context of the Liouville model the analogue of this identity has been referred to as
quantum Wronskian [20]. Evaluating it at λ = ξ±

m , ξ±
m − 1 gives the Bethe ansatz equations

above and below the equator [19, 21]. However, the above equation (19) is of a simpler
form than the Bethe ansatz equations and it is desirable to understand its consequences in the
thermodynamic limit.

An analogous construction of Q-operators for the eight-vertex or XYZ model is currently
under investigation [33].

2. The six-vertex fusion hierarchy

The inhomogeneous six-vertex model on a finite lattice is associated with the quantum loop
algebra Uq(s̃l2) in terms of which the transfer matrix and fusion hierarchy can be defined.
Consider the spin n/2 representation π(n) of the finite quantum subgroup Uq(sl2) ⊂ Uq(s̃l2),
i.e.

π(n)(e) |k〉 = [n − k + 1]q[k]q |k − 1〉,
π(n)(f ) |k〉 = |k + 1〉,
π(n)(q

h
2 ) |k〉 = q

n
2 −k |k〉

(20)
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with k = 0, 1, . . . , n. The transfer matrices of the model are built up from the intertwiners of
the respective evaluation modules. Define

L =
(

zq
h
2 +1 − q− h

2 z(q − q−1)q
h
2 +1f

(q − q−1)eq− h
2 zq− h

2 +1 − q
h
2

)
∈ Uq(sl2) ⊗ End V (21)

where V is identified as the two-dimensional representation space of π(1) and z = q2λ as
the spectral parameter. Then the inhomogeneous transfer matrix of spin n/2 is introduced by
setting2

T (n)
α (z) = Tr

π(n)
qαh⊗1LM

(
zζ 2

M

) · · ·L1
(
zζ 2

1

) ∈ End V ⊗M. (22)

For the moment the length of the spin chain M can be any positive integer and α is the twist
angle. The set {ζm = q−λm}Mm=1 are some unspecified ‘generic’ inhomogeneity parameters.
The above transfer matrices constitute the six-vertex fusion hierarchy satisfying the functional
equation [32]

T (n)
α (zqn+1)T (1)

α (z) = T (n+1)
α (zqn)

M∏
m=1

(
zq2ζ 2

m − 1
)

+ T (n−1)
α (zqn+2)

M∏
m=1

(
zζ 2

m − 1
)
. (23)

In the homogeneous limit, ζm → 1, we obtain from the transfer matrix T as logarithmic
derivative the Hamiltonian for the finite XXZ chain,

HXXZ = −(q − q−1) z
d

dz
ln

Tα(z)

(zq2 − 1)M

∣∣∣∣
z=1

= −1

2

M∑
m=1

{
σx

mσ x
m+1 + σy

mσ
y

m+1 +
q + q−1

2

(
σ z

mσ z
m+1 − 1

)}
. (24)

Here the twisted boundary conditions manifest themselves in the identification

σ±
M+1 = q±2ασ±

1 .

The well-known symmetries of the model are expressed in terms of the following commutators:[
T (m)

α (z), T (n)
α (w)

] = [T (n)
α (z), Sz

] = [T (n)
α (z),S

] = 0, (25)

and

RT (n)
α (z) = T

(n)
−α (z)R (26)

where the respective operators are defined as

Sz = 1

2

M∑
m=1

σ z
m, R = σx ⊗ · · · ⊗ σx =

M∏
m=1

σx
m, S = σ z ⊗ · · · ⊗ σ z =

M∏
m=1

σ z
m. (27)

These symmetries hold for spin chains of even as well as odd length. For later purposes we
also compute the value of the transfer matrices at the origin,

T (n−1)
α (0) = (−)M Tr

π(n−1)
q(α−Sz)h = (−)M

qn(Sz−α) − q−n(Sz−α)

qSz−α − q−Sz+α
. (28)

2 Note that we have changed our conventions in comparison with [22, 30, 31] and have made the following change
in notation, T (n)(z) → T (n−1)(zqn).
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3. The auxiliary matrices

Our construction follows the main steps of the previous works [27] and [22, 28–31] with some
minor modifications. We therefore only state the main results and briefly comment on the
steps involved to accommodate twisted boundary conditions. The reader is referred to the
aforementioned literature for the technical details.

3.1. Definition

For the definition of the auxiliary matrix we employ the following representations π± =
π±(z; r, s) of the upper Borel subalgebra Uq(b+) ⊂ Uq(s̃l2). Let k ∈ N�0 then

π+(e0) |k〉 = z|k + 1〉, π+
(
q

h1
2
) |k〉 = π+

(
q− h0

2
) |k〉 = rq−2k−1|k〉,

π+(e1) |k〉 = s + 1 − q2k − sq−2k

(q − q−1)2
|k − 1〉, π+(e1) |0〉 = 0, r, s, z ∈ C

(29)

and set

π− := π+ ◦ ω with
{
e1, e0, q

h1
2 , q

h0
2
} ω→ {

e0, e1, q
h0
2 , q

h1
2
}
. (30)

The representation π− is a particular restriction of the representation introduced in [27]. When
q is a primitive root of unity of order N we set N ′ = N if the order is odd and N ′ = N/2 if
it is even. Then the above infinite-dimensional representation becomes reducible and can be
truncated [31],

π+(e0)|N ′ − 1〉 = 0. (31)

For roots of unity this truncation will always be implicitly understood. In order to unburden
the formulae we will often drop the explicit dependence on the parameters {z, r, s} and the
representation π+. Set

L =
(

z s
r
q

h1
2 +1 − q− h1

2 (q − q−1)e0q
− h0

2

(q − q−1)e1q
− h1

2 zrq− h1
2 +1 − q

h1
2

)
∈ Uq(b+) ⊗ End V, (32)

then Lπ+ = (π+ ⊗ 1)L is the intertwiner of the tensor product π+ ⊗ π(1). Note that the
intertwiner for the representation π− is obtained via spin reversal, i.e.

Lπ− = (1 ⊗ σx)Lπ+(1 ⊗ σx). (33)

Define the auxiliary matrix in terms of the intertwiner L as the trace of the following operator
product:

Qα(z; r, s) = Tr
π+

qαh1⊗1LM

(
zζ 2

M; r, s
) · · · L1

(
zζ 2

1 ; r, s
)
. (34)

For later purposes we also define the special limits

Q+
α(z) = lim

s→0
Qα(0; 1, s)−1Qα(z; 1, s) and Q−

α = RQ+
−αR. (35)

By definition of the auxiliary matrix the operators Q±
α are well defined and we have for roots

of unity

qN = 1 : Qα(0; r, s) = (−)Mrα−Sz 1 − q2N ′(Sz−α)

qα−Sz − qSz−α
, (36)

while for

generic q : Qα(0; r, s) = (−)Mrα−Sz

qα−Sz − qSz−α
with

∣∣q−α± M
2
∣∣ < 1 for |q|±1 > 1. (37)

After a suitable renormalization (see section 4.1) the eigenvalues of the operators (35) yield
the two linearly independent solutions to Baxter’s TQ equation mentioned in the introduction.



A Q-operator identity for the correlation functions of the infinite XXZ spin chain 6647

3.2. Spin conservation and reversal

The matrix (34) commutes by construction with the fusion hierarchy and preserves two of the
symmetries (25) [28, 29],

[Qα(z; r, s), Sz] = [Qα(z; r, s),S] = 0. (38)

Because of spin conservation the dependence of the auxiliary matrix Q on the parameter r can
be easily extracted,

Qα(z; r, s) = rα−Sz

Qα(z; 1, s) ≡ rα−Sz

Qα(z; s). (39)

Without loss of generality we can therefore set r = 1 in order to discuss the behaviour of the
auxiliary matrix under spin reversal. Employing once more spin conservation we easily find
from

〈v+| L |v+〉 = zsq1+ h1
2 − q− h1

2 = (−zsq)
(
z−1q−2s−1q1− h1

2 − q
h1
2
)

〈v−| L |v−〉 = zq1− h1
2 − q

h1
2 = (−zq)

(
z−1q−2s−1sq1+ h1

2 − q− h1
2
)

the identities

RQα(z; s, {ζm})R = (−z)MqMs
M
2 −Sz

Qα

(
z−1q−2s−1; s,

{
ζ−1
m

})t ∏
m

ζ 2
m (40)

and

RQα(z, q; s)R = Q−α(zq2s, q−1; s−1)t . (41)

3.3. Commutation of the auxiliary matrices

For generic q we can employ the concept of the universal R-matrix and the fact that π+(z; r, s)

is the restriction of a well-known evaluation Verma module of Uq(ŝl2) to conclude that the
intertwiner, say S, of the tensor product

π+(z; r, s) ⊗ π+(w; r ′, s ′)

exists. Consequently, the Yang–Baxter relation S12L13L
′
23 = L′

23L13S12 holds and the
auxiliary matrices commute among each other,

[Qα(z; r, s),Qα(w; r ′, s ′)] = 0. (42)

Here we have implicitly used that

[L, π+(h1) ⊗ σ z] = [S, π+(h1) ⊗ π+(h1)
′] = 0 (43)

in order to ensure compatibility with the quasi-periodic boundary conditions. The above
commutation relations are a direct consequence of the intertwining property of L and S.

When q is a root of unity we cannot use the existence of the universal R -matrix and have
to construct the intertwiners S explicitly. This has been done for N = 3, 4, 6 in [29, 31].
Numerical checks have been carried out for N = 5, 7, 8 and the commutation relation was
found to hold. We therefore assume as a working hypothesis that the intertwiner S also exists
in the root of unity case for general N.

From (42) it follows that the eigenvalues of the auxiliary matrix are polynomial in the
parameters z, s and that the eigenvectors of the Q-operator do not depend on them.
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3.4. The TQ equation

One of the essential properties of the auxiliary matrix Qα is that it satisfies the functional
equation

Tα(z)Qα(z; r, s) = Qα(zq2; rq−1, sq−2)
∏
m

(
zζ 2

m − 1
)

+ Qα(zq−2; rq, sq2)
∏
m

(
zζ 2

mq2 − 1
)

(44)

which one derives from the following non-split exact sequence of representations [27, 28]:

0 → π+(zq2; rq−1, sq−2) ↪→ π+(z; r, s) ⊗ π(1)
z → π+(zq−2, rq, sq2) → 0. (45)

The proof can be found in [27, 28], here we have only to incorporate twisted boundary
conditions. To this end note for instance that the inclusion ı : π+(zq2; rq−1, sq−2) ↪→
π+(z; r, s) ⊗ π(1)

z in (45) is given in the following form:

|k〉 ↪→ |k + 1〉 ⊗ v+ + ck |k〉 ⊗ v−
where ck is some coefficient whose explicit form is not relevant here. Then one easily verifies
that

ı ◦ π+(qαh1; z, rq−1, sq−2) = π+(qαh1; z, r, s) ◦ ı.

Similarly one shows that the projection p : π+(z; r, s) ⊗ π(1)
z → π+(zq−2, rq, sq2),

p : |k〉 �→ c′
k |k〉 ⊗ v+

in (45) commutes with the twist operator as well,

p ◦ π+(qαh1; z, r, s) = π+(qαh1; z, rq, sq2) ◦ p.

Setting r = 1 and taking the limit s → 0 we find

Tα(z)Q±
α (z) = q±(Sz−α)Q±

α (zq2)
∏
m

(
zζ 2

m − 1
)

+ q±(α−Sz)Q±
α (zq−2)

∏
m

(
zζ 2

mq2 − 1
)
.

As we will see below, this relation is identical to Baxter’s famous TQ equation mentioned in
the introduction after an appropriate rescaling of the auxiliary matrix; see section 4.1. The
eigenvalues of the operators Q±

α defined in (35) then coincide with the two linearly independent
solutions of (13) discussed in the introduction.

As an immediate consequence of the TQ equation and the fusion relation we have in terms
of eigenvalues the identity

T (n−1)
α (z) = q−(n+1)(α−Sz)Q+

α(zq−n)Q+
α(zqn)

n∑
�=1

q2�(α−Sz)
∏

m

(
zζ 2

mq2�−n − 1
)

Q+
α(zq2�−n)Q+

α(zq2�−n−2)
. (46)

This formula is easily proved by induction.

3.5. Functional equation at roots of unity

When q is a root of unity the vital information on the spectrum of the auxiliary matrix is
encoded in the following functional equation which is a straightforward generalization of a
previous result [22] to twisted boundary conditions3;

Qα(zq2/s; s)Qα(z; t) = qSz−αQα(zq2/s; stq−2)

×
[∏

m

(
zζ 2

mq2 − 1
)

+ qN ′(Sz−α)T (N ′−2)
α (zqN ′+1)

]
. (47)

3 In order to facilitate the comparison with [22, 31] note that we have made the following changes. In order to match
the result in [22] set s = µ−2 and r = µ−1. We have also redefined the fusion hierarchy, T (n)(z) → T (n−1)(zqn),
and shifted the parameter r in [31] by r → rq−1.
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It implies the following decomposition of the eigenvalues:

Qα(z; s) = Qα(0)Q+
α(z)Q−

α (zs), Q±
α (z) =

n±∏
i=1

(
1 − zx±

i

)
(48)

where the last factors Q±
α are polynomials with a total of M = n+ + n− roots and are related

by the following formula:

Qα(0)Q−
α (z) = q(2N ′+1)(Sz−α)Q+

α(z)

N ′∑
�=1

q2�(α−Sz)
∏

m

(
zζ 2

mq2� − 1
)

Q+
α(zq2�)Q+

α(zq2�−2)
. (49)

Employing the transformation laws (40), (41) of the auxiliary matrix under spin reversal we
deduce that

n± = M

2
∓ Sz. (50)

From the above identity (49) between the eigenvalues of Q±
α we now derive the following

expression for the fusion hierarchy:

q−n(α−Sz)Qα(0)Q+
α(zq2n)Q−

α (z) − qn(α−Sz)Qα(0)Q+
α(z)Q−

α (zq2n)

= q(2N ′+1+n)(Sz−α)Q+
α(zq2n)Q+

α(z)

N ′∑
�=1

q2�(α−Sz)
∏(

zζ 2
mq2� − 1

)
Q+

α(zq2�)Q+
α(zq2�−2)

−q(2N ′+1+n)(Sz−α)Q+
α(z)Q+

α(zq2n)

{
N ′∑

�=n+1

· · · + q2N ′(α−Sz)

n∑
�=1

· · ·
}

= (q2N ′(Sz−α) − 1)T (n−1)
α (zqn).

After inserting the value for Qα(0) we obtain

T (n−1)
α (z) = (−)M

qn(Sz−α)Q+
α(zqn)Q−

α (zq−n) − qn(α−Sz)Q+
α(zq−n)Q−

α (zqn)

qSz−α − qα−Sz . (51)

As long as α 
= 0 mod N ′, Sz this expression holds true for M,N even and odd. In particular
we have for n = 1 the identity

M∏
m=1

(
1 − zζ 2

mq
) = qSz−αQ+

α(zq)Q−
α (zq−1) − qα−Sz

Q+
α(zq−1)Q−

α (zq)

qSz−α − qα−Sz (52)

which has been called ‘quantum Wronskian’ in the literature [20].

3.6. The algebraic Bethe ansatz for generic q

In [30] the spectrum of auxiliary matrices constructed in [27] have been investigated on the
basis of the algebraic Bethe ansatz. The results in [30] apply to the inhomogeneous XXZ
chain with twisted boundary conditions. Denote the monodromy matrices associated with the
transfer and auxiliary matrix by

T = (π(1) ⊗ 1)qαh⊗1LM · · ·L1 =
(
A B
C D

)
and

Q = (π+ ⊗ 1)qαh1⊗1LM · · ·L1 = (Qk�)k,��0, Qk� = 〈k|Q|�〉,
respectively. If the quantum space H carries a highest (or lowest) weight representation of
the quantum group with highest weight vector |0〉H then the eigenvectors and eigenvalues of
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the Q-operator can be computed via the algebraic Bethe ansatz. Setting r = 1 in (29) and
denoting by L

�,ε′
k,ε = 〈�, ε′|L|k, ε〉 the matrix elements of the L-operator one finds

Qα(z)

n+∏
j=1

B
(
x+

j

) |0〉H

=
∑

k�0

〈0|Qkk(z)|0〉H
n+∏

j=1

(
L

k,−
k,−
(
zx+

j

)
L

k,+
k,+

(
zx+

j

) − L
k+1,+
k,−

(
zx+

j

)
L

k,−
k+1,+

(
zx+

j

)
L

k+1,+
k+1,+

(
zx+

j

)
L

k,+
k,+

(
zx+

j

) )


n+∏
j=1

B
(
x+

j

) |0〉H

=
∑

k�0

〈0|Qkk(z)|0〉H
n+∏

j=1

q−2k−1
(
1 − zx+

j

)(
1 − zx+

j s
)(

1 − zx+
j sq−2k

)(
1 − zx+

j sq−2k−2
)


n+∏
j=1

B
(
x+

j

) |0〉H ,

where x+
j are the Bethe roots above the equator. This formula has been proved directly for

n+ = 1, 2, 3 in [30] and further checked for consistency for arbitrary n+. In the present case
of the XXZ chain we have

|0〉H = v+ ⊗ · · · ⊗ v+, H = (C2)⊗M (53)

and

〈0|Qkk(z)|0〉H = q−α(2k+1)
∏
m

qk+ 1
2
(
zsζ 2

mq−2k − 1
)
. (54)

The above expression from the algebraic Bethe ansatz then yields for the case of generic q
the same information on the spectrum which we had previously derived from the functional
equation (47) at a root of unity,

Qα(z)

n+∏
j=1

B
(
x+

j

)|0〉H

=
qSz−αQ+

α(z)Q+
α(zs)

∑
k�0

q2k(Sz−α)
∏(

zsζ 2
mq−2k − 1

)
Q+

α(zsq−2k)Q+
α(zsq−2k−2)


n+∏

j=1

B
(
x+

j

)|0〉H,

where we have set as before

Q+
α(z) =

n+∏
j=1

(
1 − zx+

j

)
, n+ = M

2
− Sz. (55)

Thus, the analogous result concerning the decomposition of the eigenvalues into Q±
α applies

also here. Note that for generic q one has to put further restrictions on the twist parameter
α [30],

|q−α±M/2| < 1 for |q|±1 � 1,

in order to ensure absolute convergence. Analytically continuing from this region the relation
(51) holds also true for generic q.

An alternative to the Bethe ansatz is to follow the analogous line of argument as presented
in [20]. Note that when we set s = q2n in (29) it follows that

s = q2n : e1 |n〉 = 0. (56)

Hence, the infinite-dimensional module π+ splits into a finite n-dimensional part W<n given
by the linear span of the basis vectors {|k〉}n−1

k=0 and an infinite-dimensional space W�n which
is the linear span of the vectors {|k〉}∞k=n. Note that W�n is left invariant under the action of
Uq(b+). Restricting the L-operator onto these two spaces, one finds

{π+(z; 1, s = q2n) ⊗ 1}L|W<n
= (1 ⊗ q− n

2 σ z){π(n−1) ⊗ 1}L(zqn)(1 ⊗ qnσz

) (57)
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and

{π+(z; 1, s = q2n) ⊗ 1}L|W�n
= (1 ⊗ q−nσ z){π+(zq2n; 1, s = q−2n) ⊗ 1}L(1 ⊗ q2nσ z)

. (58)

Employing these identities together with the invariance of W�n one can split the trace in the
definition of the auxiliary matrix into two parts leading to

Qα(z; s = q2n) = qn(Sz−α)T (n−1)
α (zqn) + q2n(Sz−α)Qα(zq2n; s = q−2n). (59)

Apart from the factorization of Qα into Q±
α this corresponds to the identity (51). As it turns

out this result is already sufficient for our present purposes, i.e. the analytic continuation of
the fusion hierarchy in the spin variable. See equation (71) below.

4. The trace function

In order to make contact with the trace function used in [14] we now reparametrize the fusion
hierarchy and the Q-operator and take M to be even.

4.1. Reparametrization

Henceforth we set z = q2λ, ζm = q−λm and define the rescaled fusion hierarchy as

T (n)
α (z) → t (n)

α (λ) := (zq)−
M
2 T (n)

α (z)

(q − q−1)M

∏
m

ζ−1
m . (60)

This renormalization corresponds to the following choice of the six-vertex R-matrix which is
in accordance with the conventions used in [14],

r(λ) =


[λ + 1]q 0 0 0

0 [λ]q 1 0
0 1 [λ]q 0
0 0 0 [λ + 1]q

 . (61)

Thus, the fusion hierarchy is now expressed as

t (n)
α

(
λ +

n + 1

2

)
tα(λ) = t (n+1)

α

(
λ +

n

2

)∏
m

[λ − λm + 1]q + t (n−1)
α

(
λ +

n + 2

2

)∏
m

[λ − λm]q

(62)

with the quantum determinant being

t (0)
α (λ) = t (0)(λ) =

∏
m

[
λ − λm +

1

2

]
q

. (63)

Let us now turn to the re-definition of the auxiliary matrix. With respect to the decomposition

L(λ) =
(

L+
+ L+

−
L−

+ L
−
−

)
the matrix entries are now chosen as

L+
+ = ζ− 1

2
ζ 2/rqλ+ h1+1

2 − q−λ− h1+1
2

q − q−1
, s = ζ 2, z = q2λ

L+
− = ζ− 1

2 q−λe0q
− h0+1

2 ,

L−
+ = ζ− 1

2 q−λq− h1−1
2 e1,

L−
− = ζ− 1

2
rqλ− h1−1

2 − q−λ+ h1−1
2

q − q−1
.

(64)
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Note that this re-definition corresponds to the overall scaling factor

Qα(z; r, s = ζ 2) → Qα(λ; r, ζ ) := (zqζ )−
M
2

(q − q−1)M
Qα(z; r, s = ζ 2)

∏
m

ζ−1
m (65)

and the eigenvalues of the auxiliary matrix in each spin sector have now the following
decomposition:

Qα(λ; r, ζ = qλ′
) = Nαrα−Sz

qλ′Sz

Q+
α(λ)Q−

α (λ + λ′) (66)

with

Nα =
q−N ′(Sz+α) [N ′(α+Sz)]q

[α+Sz]q
, if qN = 1

1
qα+Sz −q−Sz−α , if q generic

and

Q±
α (λ) =

n±∏
i=1

[
λ − ξ±

i

]
q
, x±

i = q−2ξ±
i . (67)

Here we have used the sum rule

q−M

n+∏
i=1

x+
i

n−∏
i=1

x−
i

∏
m

ζ−2
m = Q−α(0, q−1)

Qα(0, q)
= qSz−α − qα−Sz

q−Sz−α − qα+Sz

which follows from combining (40) with (41) and setting z = 0 . Employing this
decomposition the TQ equation is equivalent to

tα(λ)Q±
α (λ) = q−αQ±

α (λ + 1)

M∏
m=1

[λ − λm]q + qαQ±
α (λ − 1)

M∏
m=1

[λ − λm + 1]q . (68)

The expression for the transfer matrices of the fusion hierarchy is now

t (n−1)
α (λ) = q−nαQ+

α

(
λ + n

2

)
Q−

α

(
λ − n

2

)− qnαQ+
α

(
λ − n

2

)
Q−

α

(
λ + n

2

)
q−Sz−α − qα+Sz , n ∈ N. (69)

It is the last expression respectively (51) which we want to analytically continue in n in order
to obtain the trace function used in the description of the correlation functions of the infinite
XXZ chain.

4.2. Analytic continuation and the limit α → 0

As mentioned in the introduction we now analytically continue the expression for the fusion
hierarchy (51), (59) in the spin variable n/2 by defining the following operator:

T α(z, ζ ) = (−)M
ζ Sz−αQ+

α(zζ )Q−
α (zζ−1) − ζ α−Sz

Q+
α(zζ−1)Q−

α (zζ )

qSz−α − qα−Sz (70)

= ζ α−Sz

Qα(zζ−1; s = ζ 2) − ζ Sz−αQα(zζ ; s = ζ−2)

qSz−α − qα−Sz Qα(0)−1. (71)

Note that this analytic continuation is unambiguous as the operators on the right-hand side
of (71) have only a polynomial dependence on the spectral parameter z by construction. The
rescaled counterpart of (71) gives the result (16) stated in the introduction,

tα(λ, ζ ) ≡ T α(z = q2λ, ζ )

qM(λ+1/2)(q − q−1)M

∏
m

ζ−1
m . (72)
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First note that we recover the fusion hierarchy (51) respectively (59) when setting ζ = qn,

T α(z, ζ = qn) = T (n−1)
α (z). (73)

Now, as an easy example for the occurrence of terms linear in λ in the matrix elements we
evaluate (70) at the origin z = 0. Then we have for nonzero spin Sz 
= 0

(−)M lim
α→0

T α(0, ζ ) = lim
α→0

ζ−α+Sz − ζ α−Sz

q−α+Sz − qα−Sz = ζ Sz − ζ−Sz

qSz − q−Sz . (74)

For vanishing spin Sz = 0 we set ζ = qλ and obtain

(−)M lim
α→0

Tα(0, ζ = qλ) = λ. (75)

These last two relations correspond to the defining equations (5.3) in [14], see also (12) in
the introduction of this paper. The occurrence of linear terms λ in the matrix elements is not
restricted to the zero spin sector but occurs more generally. To see this we now derive the
analogue of lemma 5.1 in [14].

Lemma. For M even the analytically continued fusion hierarchy (70) decomposes in the limit
α → 0 into a sum

lim
α→0

T α(z, ζ = qλ) = λ · G̃(z) + G(z) (76)

where the operators G̃,G are polynomial in the spectral variable z and in each fixed spin
sector Sz 
= 0 have degrees

deg G̃|Sz = M − |Sz| and deg G|Sz = M. (77)

If Sz = 0 then

deg G̃|Sz=0 = M and deg G|Sz < M. (78)

According to the rescaling (70) this obviously implies (18).

Remark 1. For comparison with lemma 5.1 in [14] we have to identify z → ζ 2
1 and

M = 2p − 2, compare with (7) in this paper. Moreover, we do consider here the degree of an
operator in a whole spin sector, not a single matrix element as in [14].

Remark 2. Note that for M odd the linear terms in λ are absent, since the terms containing
Trπ+qαh1 which contains a pole in the limit α → 0 can never occur in a matrix element of the
Q-operator. See the proof below for an explanation.

Note further, at roots of unity and periodic boundary conditions α = 0 the linear terms
have not been observed in [22] and [23, 24]. This is explained by the fact that the root of
unity limit does not commute with the limit α → 0. As long as α 
= 0 (and generic) the root
of unity symmetries discussed in [22, 23, 25, 26] are not present, whence we arrive here at a
different result.

Proof. Since we are only interested in determining the maximal degree of the respective
polynomials in z we can set ζm = 1 without loss of generality. As an additional preparatory
step we need to make contact with the Casimir operator which has also been used to define
the trace function in [14]. Set r = 1 in (29), then we have

[e1, e0] = z
sqh1 − q−h1

q − q−1
(79)

and

C = z
sqh1−1 + q−h1+1

(q − q−1)2
+ e1e0 = z

1 + s

(q − q−1)2
. (80)
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This identity corresponds to equation (5.4) in [14], see (12) in this paper. Now consider a
general matrix element of the auxiliary matrix

Qα(z; s)ε
′

ε = Tr
π+

qαh1⊗1L
ε′
M

εM
· · · Lε′

1
ε1 ,

∑
m

εm =
∑
m

ε′
m = 2Sz. (81)

Since the Q-operator preserves the total spin the matrix elements L
±
∓ always occur in pairs and

we compute

Tr
π+

{
XL±

∓L∓
±
} = zq Tr

π+
{X(q − q−1)2C − sqh1±1 − q−h1∓1}

= zq Tr
π+

{X(1 + s − q−h1∓1 − sqh1±1)}. (82)

The numbers of the various operators Lε′
ε occurring in a matrix element is given by

#L±
± + #L∓

± = M

2
± Sz = n∓ and #L+

− = #L−
+ =

∑
m

1 − εmε′
m

2
=: nε,ε′ . (83)

Using the above relations any matrix element of the Q-operator in a fixed spin sector can be
expressed as a linear combination of terms of the form

Qα(zζ ; s = ζ−2)ε
′

ε = (zq)nε,ε′
∑

cε,ε′ Tr
π+

{
qαh1

(
ζ−1zq1+ h1

2 − q− h1
2
)n−−nε,ε′

× (ζzq1− h1
2 − q

h1
2
)n+−nε,ε′

nε,ε′∏
i=1

ζ σi q−σih1

}
where the coefficients cε,ε′ do not depend on z and σi = 0,±1 can vary in each factor, but
there can be terms present for which all the σi are equal. To see this note that

[
L+

+,L
−
−
] = 0,

while the commutation of L
±
± with L

∓
± only produces powers in q. The operators L+

− and L−
+

commute according to (79). Let us distinguish the two cases nε,ε′ = 0 and nε,ε′ 
= 0.
Choose a matrix element with nε,ε′ = 0, i.e. εm = ε′

m. This is possible in all spin sectors.
Then the term of maximal degree has the coefficient

Qα(zζ ; s = ζ−2)εε = Tr
π+

{
qαh1

(
ζ−1zq1+ h1

2 − q− h1
2
)M

2 −|Sz|(
ζzq1− h1

2 − q
h1
2
)M

2 −|Sz|

×(ζ−σ zq1+σ
h1
2 − q−σ

h1
2
)2|Sz|} = (zq)Mζ−2Sz

Tr
π+

qα(1+Sz)h1 + · · · .
Here we have set σ = sgn Sz. From this we infer using (71) that

ζ Sz−αQα(zζ ; s = ζ−2) − ζ α−Sz

Qα(zζ−1; s = ζ 2)

(qSz−α − qα−Sz
)Qα(0)

= (zq)M
ζ−Sz−α − ζ α+Sz

(qSz−α − qα−Sz
)Qα(0)

Tr
π+

qα(1+Sz)h1 + · · · .

Setting ζ = qλ we conclude similarly to our previous calculation at z = 0 that the linear terms
in λ originate from coefficients containing Trπ+qαh1 which develops a pole in the limit α → 0.
Thus, we deduce that deg G̃ = M and deg G < M when Sz = 0. When Sz 
= 0, on the other
hand, we have as degrees deg G = M and deg G̃ = M − |Sz|. Note that for this it is crucial
that 2|Sz| is an even integer which is only the case when M is even.

Now choose a matrix element with nε,ε′ 
= 0. This is always possible as long as
|Sz| < M/2. All we need to show is that the just derived degrees are not exceeded. The term
of maximal degree has now coefficients of the form

Qα(zζ ; s = ζ−2)ε
′

ε = (zq)M−nε,ε′
∑

cε,ε′ζ−2Sz

Tr
π+

q(α+Sz)h1

nε,ε′∏
i=1

ζ σi q−σih1 + · · · .
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As in the earlier examples we need to determine the maximal degree of the term which
contains Trπ+qαh1 yielding the linear dependence on λ in the limit α → 0. The degree of G̃ is
maximized by choosing a matrix element with nε,ε′ = |Sz|, where the coefficient of the term
with all σi = sgn Sz is non-vanishing. Then we have

ζ Sz−αQα(zζ ; ζ−2)ε
′

ε − ζ α−Sz

Qα(zζ−1; ζ 2)ε
′

ε = const(zq)M−|Sz|(ζ−α − ζ α) Tr
π+

qαh1 + · · ·

from which we infer in the limit α → 0 that the maximal degree of G̃ in a fixed spin sector is
again M − |Sz|. For the remainder polynomial G we find as before that its degree is strictly
smaller than M if Sz = 0. �

4.2.1. Example: M = 4 and Sz = 1. Let us consider a simple example for the homogeneous
chain to show how the linear term in λ emerges in a matrix element of the operator (70).
Setting M = 4 and Sz = 1 we choose the matrix element

Qα(z; s)−+++
+−++ = Tr

π+
qαh1

(
zsq1+ h1

2 − q− h1
2
)2

zq(1 + s − q−h1−1 − sqh1+1)

= zq Tr
π+

qαh1(z2s2q2+h1 − 2zsq + q−h1)(1 + s − q−h1−1 − sqh1+1)

= −zsq2{z2s + 1 + 2z(1 + s)} Tr
π+

qαh1 + · · · . (84)

In the last line we have only written out the terms which will give rise to the linear dependence
in λ. Namely, inserting this expression into (70) we find

T α(z; ζ )−+++
+−++ = ζ 1−αQα(zζ ; ζ−2) − ζ α−1Qα(zζ−1; ζ 2)

Qα(0)(q1−α − qα−1)

= −zq2(z2 + 1 + 2z(ζ + ζ−1))
ζ−α − ζ α

Qα(0)(q1−α − qα−1)
Tr
π+

qαh1 + · · ·

= −zq2(z2 + 1)
ζ−α − ζ α

Qα(0)(q1−α − qα−1)
Tr
π+

qαh1 + · · · . (85)

Let us distinguish the case when q is generic and when it is a root of unity. If qN = 1 then

Qα(0) = 1 − q−2N ′α

qα−1 − q1−α
and Tr

π+
qαh1 = 1 − q−2N ′α

qα − q−α
. (86)

On the other hand we have for generic q

Qα(0) = 1

qα−1 − q1−α
and Tr

π+
qαh1 = 1

qα − q−α
, (87)

where these expressions are understood as analytic continuation from the region where the
trace converges. Thus, setting ζ = qλ we arrive at

lim
α→0

T α(z; ζ )−+++
+−++ = −zq2(z2 + 1 + 2z(qλ + q−λ)) lim

α→0

qαλ − q−αλ

qα − q−α
+ · · ·

= −λzq2(z2 + 1 + 2z(qλ + q−λ)) + · · · (88)

where the coefficient of λ is of degree M − |Sz| = 3 in z in accordance with our lemma.

5. Conclusions

In this paper we continued a previous study [22, 28–31] on the explicit construction of operator
solutions to Baxter’s TQ equation (13). In terms of eigenvalues this equation is a second-order
difference equation and its theory resembles closely that of second-order ordinary differential
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equations. In the case of the XXZ chain we discussed the existence of two linearly independent
solutions when quasi-periodic boundary conditions are imposed by explicitly constructing the
relevant Q-operators using representation theory. Because it is usually required that Q-
operators should commute for arbitrary values of the spectral parameter, [Q(z),Q(w)] = 0,
this precludes by choice of the construction method the possibility of obtaining ‘non-analytic’
solutions to the TQ equation: that is, solutions which obtain the linear terms discussed in the
text and which have been postulated in [21] for even chains with periodic boundary conditions
and when q is generic. The result of this paper is that such solutions can arise by taking
the limit from quasi-periodic to periodic boundary conditions in the explicitly constructed
Q-operators. Recall that for generic q this limit required a careful analysis. First one had to
choose the twist parameter α such that convergence of the trace over the infinite-dimensional
auxiliary space is guaranteed. In a second step we then analytically continued the matrix
elements in α from the region of convergence to the complex plane which enabled us in the
final step to discuss the limit α → 0. To complete the investigation by computing the spectra
of the Q-operators in this limit one would need to know the explicit dependence of the Bethe
roots on the twist parameter. This is a rather formidable challenge as the solutions to the Bethe
ansatz equations are in general not known.

The main motivation for our construction of this ‘non-analytic’ Q-operator has been the
relation with the recent developments in the computation of correlation functions as explained
in detail in the introduction. The alternative expression (16) for the special trace of the
monodromy matrix (7) entering the ansatz in [14] shows that there is a more fundamental
quantity in which the correlation functions can be expressed and provides a different point of
view on the role of the trace function (74). In future work it needs to be explored whether
there are concrete practical implications of the identity (16) which facilitate the computation
of correlation functions. For instance, one might ask whether one can insert each of the two
terms in the difference (16) separately in the ansatz for the correlation functions and if they
satisfy identities analogous to the quantum Knizhnik–Zamolodchikov equations. Of course
one has to keep in mind that in order to perform the limit α → 0 both terms will be needed at
the end. However, such an investigation might yield further insight into the analytic structure.

Note added in proof. After this paper was completed the work [34] appeared which extends the investigation of
correlation functions to the inhomogeneous eight-vertex or XYZ model. An analogous Q-operator for this model
would be helpful as it would simplify the computation of the analogue of the trace function over the Sklyanin algebra.
The present discussion provides a first step towards this aim.
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